MSE Research Areas

 

Computational Materials Science

Materials theory, modeling, and simulation address all classes of materials and materials phenomena.  They provide a means of interpreting experiment, summarizing our understanding, explore the origins of observed behavior, and make predictions about structure, property and behavior.  This is a golden time for materials theory, modeling, and simulation as  (1) materials science and its tools becoming increasingly quantitative and higher resolution, (2) computational power is exploding, and (3) new classes of theoretical and computational formalisms develop.  Materials theory, modeling, and simulation addresses all materials length and time scales. At Penn, these range from the electronic (quantum mechanical), atomistic, microstructural, and continuum levels. Increasingly, the forefront of research at Penn focuses on bridging between and integrating these (multi-scale modeling).  Current research at Penn focuses on defects in materials, materials processing, two dimensional materials, descriptions of bonding, interaction of materials with electromagnetic radiation, soft materials, biomaterials, mechanical behavior, nanomaterials, and electrochemical systems.

Primary Faculty:
Dawn Bonnell
Russell Composto
Mahadevan Khantha
Vivek Shenoy
David Srolovitz
Vaclav Vitek

Secondary Faculty:
John Bassani
Nader Engheta
Andrew Rappe

Electronic, Optical and Magnetic Materials

The ability tocontrol functional condensed matter systems with atomic level precision presents endless opportunities to build novel devices and structures and for understanding the chemistry and physics of solid state materials. Precisely engineeredlow-dimensional materials with tailored properties will lead to new optoelectronic and quantum device paradigms and applications. In low-dimensional materials the interplay of geometry, topology, mechanical deformations and symmetry breaking fields can drastically modify their electronic, optical and photonic properties and produce new phases of matter with tunable responses where the flow of charged carriers, phonons and photons can be exquisitely controlled.New nanoscale materials and their heterostructures are a rich and emerging source for exploring electronic and optical phenomena that are unattainable in conventional material systems. Foundational research on these emerging materials will have significant impact for future applications including quantum computing, photonics and sensing.Current research in MSE includes synthesis and assembly of functional materials, designing new probes and device paradigms to evaluate new theories to expand the fundamental understanding of these materials, and engineering materials, structures and devices with innovative functionalities for future technologies that will also besustainableand energy efficient.

Primary Faculty:
Ritesh Agarwal
Dawn Bonnell
I-Wei Chen
Peter K. Davies
Eric Detsi
Liang Feng
Christopher Murray
Karen Winey
Shu Yang

Secondary Faculty:
A.T. Charlie Johnson

Microscopies and Scattering

Modern electron microscopes rely upon the high charge/mass ratio of electrons to probe the local properties of materials with extraordinary resolution. In the department, we have a long tradition of investing in, and applying, the very latest in electron microscope technology to the study of materials. At present, the Electron Microscopy Facility within the Singh Nanotechnology Center has five scanning and transmission electron microscopes that can be used to study the structure, microstructure, chemistry and electronic bonding of materials. Studies of materials at resolutions that allow imaging at atomic resolution are now routinely accomplished by undergraduate and graduate students, and post-doctoral fellows using these instruments. Within the facility, regular training is provided to enable students to integrate electron microscopy studies in their research programs through both classroom and laboratory instruction, as well on an as-needed basis.  In the near future, there will be installation of two new scanning transmission / transmission electron microscopes within the facility, one of which will be a first of its kind in the U.S.

Primary Faculty:
Ritesh Agarwal
Dawn Bonnell
Russell Composto
Peter K. Davies
Eric Detsi
Liang Feng
Christopher Murray
Eric Stach
Karen Winey

Secondary Faculty:
Robert Carpick
A.T. Charlie Johnson
Andrew Rappe

Materials for Energy

The inexorable growth in the global demand for energy is raising fundamental problems in resource limitations and environmental pollution. Electricity -generation potentially provides a sustainable means for meeting the world's growing energy needs. New materials are essential in the development of new energy generation and storage technologies that use fossil fuels more efficiently with minimum emissions. Two major examples are fuel cells (with polymer or solid-oxide membranes) for direct electrochemical conversion of fossil fuels to electricity, and advanced batteries that can efficiently store the electricity. Fuel cells using fossil fuels can double the efficiency, with emissions of only H2O and ~ 50% less amounts of CO2. Materials advances are essential to increase the cell efficiency and lifetimes, as well as reducing cell -fabrication costs. Advanced batteries (e.g. lithium) require new materials for the electrolytes to increase charging speed, improve safety, and extend lifetimes. In addition, porous materials with tuneable pore size and surface chemistries are being designed for electrodes in batteries, as well as for hydrogen storage and supercapacitors.

Primary Faculty:
Ritesh Agarwal
Peter K. Davies
Eric Detsi
Christopher Murray
Vivek Shenoy
Eric Stach
David Srolovitz

Secondary Faculty:
Robert Carpick
Raymond Gorte
Cherie Kagan
Andrew Rappe

Inorganic Materials

Ceramics are covalently and ionically bonded materials that have relatively high melting temperatures. They have unique thermal, mechanical, and electrical properties useful for advanced applications, from cathodes and anodes of rechargeable batteries and supercapacitors, high fidelity dielectric oxides for wireless communication, high temperature superconducting layered compounds for loss-free power lines, high efficiency cells for direct fuel-electricity conversion, heat-resistant silicon nitrides for high speed machining, ferroelectric perovskites for ultrasonic imaging, resistance switching thin films for non-volatile memory, to magnetoresistive oxides for novel spintronic gate devices. Active research to develop and understand these materials is being conducted in the department. Processing and atomistic design are an integral part of this effort.

Primary Faculty:
Ritesh Agarwal
I-Wei Chen
Peter K. Davies
Eric Detsi
Christopher Murray

Secondary Faculty:
Raymond Gorte
Andrew Rappe
Kevin Turner

Nano & Low Dimensional Materials

The basic building blocks in many new material systems are based on structural units with dimensions in the nm range. Tubes and wires with 1 nm widths, microporous structures (pore size < 2 nm), mesoporous structures (pore size between 2-50 nm),  macroporous structures (pore size > 50 nm), particles with 30-100 nm diameters, biological molecules with 3-30 nm dimensions, films with 2-100 nm thicknesses, membranes with 10 nm widths, and solids with grain sizes < 500 nm are now routinely produced. This diversity allows new classes of materials to be explored. Earth-abundant non-precious nanoporous materials are being developed for advanced electrochemical energy storage applications. Polymer-drug composites with particle sizes on the order of 100 nms are being developed for drug delivery using a variety of scheme for extended delivery. Hybrid structures that contain organic/biomolecular as well as inorganic structural units are being assembled for bioelectronic applications. Carbon nanotubes are the focus of much research due to potential applications in display technology, molecular electronics, sensors, and as reinforcements in structural materials. Nanodomains in complex oxide compounds are being controlled to induce new property combinations.

Primary Faculty:
Ritesh Agarwal
Dawn Bonnell
I-Wei Chen
Russell Composto
Peter K. Davies
Eric Detsi
Liang Feng
Mahadevan Khantha
Christopher Murray
Vivek Shenoy
Eric Stach
David Srolovitz
Vaclav Vitek
Karen Winey
Shu Yang

Secondary Faculty:
John Bassani
Robert Carpick
Nader Engheta
Raymond Gorte
A.T. Charlie Johnson
Andrew Rappe
Kevin Turner

Polymers, Soft Matter and Biomaterials

Plastics, rubbers, proteins, epoxies, networks, gels, and such belong to the broad class of materials called polymers, because all of these materials have many ("poly") small repeat units ("mers") covalently bonded together. Polymers have unique physical properties due to their considerable molecular size, numerous conformations, and chemical variety. Their properties can be modulated by combining one or more polymers to make polymer blends or by adding nanoparticles to make polymer nanocomposites.  Moreover, polymer properties are sensitive to their processing history, which can impact structure and phase transformations, and by confining polymer to thin films, surfaces or nanoporous templates.  Within the Department of Materials Science and Engineering at Penn, we have expertise in a wide range of polymers including acid- and ion-containing polymers that can be used for tough thermoplastics and specialty membranes, responsive polymer that change shape and function in response to external stimuli, advanced polymer coatings that reduce infection and capture water, and polymer nanocomposites that exhibit emergent mechanical and optical properties.  Many of the topics in polymer materials science overlap with research in the area of soft matter, which encompasses amorphous polymers, colloids and lipids that assemble into hierarchical structures.

Biomaterials encompass all classes of materials that are used in medical applications including tissue engineering, medical implants, and drug delivery.  In MSE at Penn, polymers and inorganic materials are being developed to replace bone and blood vessels.  Coating are being designed using peptides to control cell attachment and ultimately function.  Novel ceramic-peptide composites are also used to control drug release.  In addition, theoretical models are being developed to understand the mechanics of biological systems.

Beyond the MSE department, Penn has extensive activity in polymers, soft matter and biomaterials and all these efforts combine to provide a vibrant research environment.

Primary Faculty:
Dawn Bonnell
Russell Composto
I-Wei Chen
Peter K. Davies
Eric Detsi
Vivek Shenoy
Karen Winey
Shu Yang

Secondary Faculty:
Cherie Kagan